

A COMPARATIVE STUDY ON SOLUBILITY OF ROOT END FILLING MATERIALS - AN INVITRO STUDY

By

DR. SUPRIYA M

Dissertation Submitted to the Rajiv Gandhi University of Health Sciences, Karnataka, Bangalore

In partial fulfilment

Of the requirements for the degree of

MASTER OF DENTAL SURGERY

In

CONSERVATIVE DENTISTRY & ENDODONTICS

Under the guidance of

DR. GEETA HIREMATH

Professor

DEPARTMENT OF CONSERVATIVE DENTISTRY AND ENDODONTICS S.D.M. COLLEGE OF DENTAL SCIENCES & HOSPITAL, DHARWAD

2018-2021

Rajiv Gandhi University of Heath Sciences,

Bangalore, Karnataka

ABSTRACT

Aim: The aim of this in vitro study was to compare and evaluate the solubility of MTA,

MTA Plus, chitosan and their conjugates in synthetic tissue fluid (STF).

Materials and methodology: 96 stainless steel ring moulds with an internal diameter

of 10+1mm and a height of 2+0.1mm were selected. Materials used were MTA, MTA

Plus, Chitosan and their Conjugates. The samples were divided into 4 groups and placed

in synthetic tissue fluid (STF) for 7 and 28 days. Materials were mixed and inserted

into the moulds. The samples weight was recorded before and after immersion in STF.

The weight differences were calculated and the percentage of weight changes were

recorded. One specimen from each experimental group was selected and examined for

microstructure and elemental composition of the samples using a scanning electron

microscope (SEM) connected to a secondary electron detector for energy dispersive X-

ray analysis (EDX). Statistical analysis was done with two-way ANOVA and Tukey's

multiple post hoc analysis.

Results: MTA showed less solubility at 7 and 28 days. The solubility of MTA Plus

chitosan conjugate decreased after 28days of immersion in STF. According to

SEM/EDX analysis, the conjugates of MTA and MTA Plus showed an increased

number of calcium phosphate deposits on the surface compared to MTA and MTA Plus

alone.

Conclusion: The conjugates of MTA and MTA Plus showed better surface deposits

when examined under SEM/EDX. Hence chitosan can be a novel material in dentistry

to increase the bioactivity of the materials.

Keywords: Chitosan, MTA, MTA Plus, Solubility

XV